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AN APPROXIMATE SOLUTION FOR LUMINOSITY DISTANCE IN
ZERO-PRESSURE RELATIVISTIC MODEL UNIVERSES
THAT HAVE THE U-PROPERTY

By Windsor L. Sherman
Langley Research Center

SUMMARY

Finite-density zero-pressure models of the universe based on general rela-
tivity are studied. These models have the U-property (time-dependent uni-
formity) and a metric subspace described by the Robertson-Walker metric. Highly
accuragte approximate closed-form expressions for the radial metric variable, the
luminosity distance, the time of light travel, and the scale factor of the uni-~
verse are obtained. The results are used to obtain new forms of the redshift-
magnitude and count-magnitude relations that are useful for the analysis of
observational data once the signs of the cosmical constant and curvature con-
stant are known. The redshift-magnitude relation is of a form that permits the
determination of the density parameter from apparent magnitude and redshift data.

INTRODUCTION

In order to find the model universe that best represents the observed uni-
verse, it is necessary to determine certain parameters from observational data.
These parameters include the acceleration and density parameters. At present
the most satisfactory expression to use for the determination of these param-
eters is the redshift-magnitude relation. Several forms of the redshift-
magnitude relation have been derived and are presented in references 1 to 3.

Two of these redshift-magnitude relations are based, either explicitly as in
reference 1 or implicitly as in reference 2, on the assumption that a term
called the cosmical constant 1s zero. Reference 3 presents a redshift-magnitude
relation based on a model universe that has a nonzero cosmical constant. How-
ever, because of the assumption of zero material density used in deriving the
model universes, some of the zero-density models presented in reference 3 are
not suitable for the analysis of observational data. The unsuitable models
occur, for the most part, when the acceleration parameter is less than or equal
to zero. Because models with an acceleration parameter that is less than zero
may be important in the analysis of observational data when evolutionary effects
are considered, finite-density zero-pressure model universes that possess time-
dependent uniformity (U-property) are studied to determine whether the catalog
of redshift-magnitude relations for model universes with & nonzero cosmical
constant could be improved.



The study resulted in a very good approximate expression for luminosity
distance, and hence, for the redshift-magnitude relation, for model universes
with a nonzero cosmlcal constant and finite density. The only model universes
not included are those with a zero cosmical constant. For the model universe
with a zero cosmical constant an exact solution exists. (See ref. 1.)

ANATLYSIS

Distance in the observed universe is given by

m'K=5lOg]_oDZ+AMo+Mo‘5 (1)

where m 1is the apparent magnitude of the source, K 1is the correction for
redshift to apparent magnitude, M, is the absolute magnitude of the equivalent
local source, AMy 1s the evolutionary correction to the apparent absolute mag-

nitude, and Dy 1s the luminosity distance. (See appendix for a complete sym-
bol list.) The luminosity distance is obtained from the model universe, which,
in the present study, is based on general relativity. In relativistic model
universes (ref. 2), D, 1is given by

D; = Ro(1 + 3)s(w) (2)

where Rg 1s the present value of the scale factor, ® is the redshift, w 1is

a function of the radial metric variable (ref. %), and S(w) is a function of
®w that depends on the curvature of space. If the model also possesses zero
pressure, time-dependent uniformity, and a metric subspace defined by the
Robertson-Walker metric, S(w) is given by

S(w) = —= sinh {"E o (3)

where Kk 1is the curvature constant. In this case the variable w 1is given by

d
o f = - 1/2 ()
oo YO 2
o0 (1 + 5)5 - __52__(1 + 5)2 + A
o 2., 2 2
Ry Hg 3H, _
where c¢ 1s the speed of light in a vacuum, o0p 1is the density parameter, Hg
is the Hubble parameter, and A 1is the cosmical constant. The constants 592
Ro
and A are given by
2
ke - 152(300 - 95 - 1) (5)




A = 5H02(?o - q{b (6)

where g, 1is the acceleration parameter. Equations (5) and (6) are used to

eliminate E;i- and A from the integrand of equation (4), and the following
RO
equation results:
S
as
o-v%c [ . @
HORO 0

[200(1 +8)0 - (30, - 9o - 1)(1 +8)2 + (0o - qo)]l/2

This integral is elliptic and cannot be integrated in terms of simple func-
tions. Mattig (ref. 1) simplified this integral by assuming that A = O and
thus obtained simple closed-form solutions. In reference 3 the integral was
simplified by assuming that the density parameter o, was zero and showed that
under certain conditions the resulting zero-density models could be applied to
the observable universe. The assumption that A = O deletes the constant
term in equation (7), whereas the zero-density assumption affects terms of all
orders, including the constant term. As shown in reference 3, there are cer-
tain zero-density models, primarily those with 0 < dg < -1, that cannot be
used for the analysis of observational data. Because of this difficulty, equa-
tion (7) was studied to determine whether simple closed-form solutions that were
good approximations of equation (7) could be obtained without setting the den-
sity equal to zero.

There are several approaches for obtaining approximate solutions in terms
of simple functions. One of the approaches is to expand the integrand in a
MacLaurin Series about ©® = 0, and another is to determine whether higher order
terms involving density, such as 20065, can be neglected. The second approach

1s used in the present analysis.

If the term 20,(1 + 8)° in equation (7) could be neglected, S(w), and
consequently the luminosity distance, would be algebraic expressions. An anal-
ysis of the relative significance of the terms under the radical in equation (7),
however, showed that the term 200(1 + 6)5 was significant, and this approach

was abandoned.

The denominator of equation (7) was expanded so that & became the varia-
ble. The expansion gave

o)
° [20085 + (300 + g, + 1)62 + e(qo + 1)6 +1]

An analysis of the relative significance of the terms in the denominator of
equation (7a) showed that for the presently accepted ranges of 9% and dq



0.016 < 6, < 0.16 and 0.5 < < 2.5), the term 20,87 made a negligible
o 95

contribution to the denominator when & < 1.

The general solution of equation (7a) with 20,83 =0 is

oo L B+ a, - 30, cosn-l (1 + qg + 30,)8 + (gp + ;)
ﬁ'l + 44 + 30, vq_o (qo + :L) - 30,
- cosh-1 Qo *+ 1 —

Vl + a4 - 39,

where the coefficient of the integral has been written as

=

UJHORO

through the use of equation (5). In figure 1 is a comparison of
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by equations (7a) and (8) for the
model universe for which A< 0
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conditions, the term 20085

A A¢( extends appreciably beyond

The function S(w) is

8
, ! ] ’ and k = ~1. For both models shown
1 0o = 0.08; for one model g, = 0.5,

whereas for the other, q4 = 2.5.

- Equation {7a) As shown in figure 1, differences

6 - //; between the exact and approximate
' B A forms cannot be detected for

/}/ dy = 2.5, and they are barely
detectable for do = 0.5 at the
! //; . higher values of &. This fact is
qfos;Pf A interesting because the term 20,57
//c was neglected on the basis that
9// //” 5 < 1. T@e results shown in fig-
4 ure 1 indicate that, for present

is

negligible out to & = 1, and the
results of calculations (not shown )
indicate that this condition

o = 1.

This occurrence greatly extends the
usefulness of the solution for w.

° 2 4 s 8 0 obtained by substituting equa-

Figure 1.- Comparison of integration of equation 7(a) with integration
of equation (8} for o, = 0.08.

tion (8) into equation (3) and is



S(w) =

_l_ ﬁ + 4 - 50 o h'l l + a5 + 300)6 + (qo + l)
J_-

l + q-O + 300 Jqo(q_o + l) - 30’0

qo+l

qdo(qo + l) - 304

Because, as shown in figure 1, the results for « in the exact and approximate
solutions are very nearly equal, there should be little difference in s(w) for
the exact and approximate expressions because the hyperbolic sine is operating
on arguments that are almost equal for the exact and approximate solutions.

- cosh"l

(9)

The luminosity distance is obtained by substituting equation (9) into equa-
tion (2) and is as follows:

c(l +9d 1 + q, - 30
Dy = ( ) sinh [ o o
Hofl + a5 - 30, V

(1 + dq ,+ 300)8 + (q_o + l)

Jqo(qo + l) - 304

+ 1
- cosh"l do

4‘10 (qo + l) - 39,

In figure 2 is compared the approximate solution for Dj; which is given by equa-
tion (10) with the exact solution for Dj; which is obtained by using the value
of w given by equation (7a) in equations (2) and (3). As can be seen, the

(10)

)
-
This approximation is good out to & =1, as
shown by figures 1 and 2, in spite of the fact
4 Exact soiution that it was obtained under the restriction
O Equation{0) that & < 1. Unfortunately, this approximate
solution holds only when A # O; however,
3 -+ Mattig's work (ref. 1) provides an exact solu-
b ) tion for A =0.

1

A4 .

0= 05 i:),/ Even though the solution for Dj; given

__\ ;ij by equation (10) is a very good approximation

| to the exact solution for Dj, differences are
Akfﬁ/ introduced as ©® 1increases above 1. Let ¢
m/;y“' be the difference between the exact and
o° i ) 1 i - approximate forms of equation (9); then Dy,e»
8 ' ’ the difference in D; due to the difference

€, is given by

agreement is as good as that found for

5x 10

Figure 2.- Comparison of exact and approximate luminosity

distances. op = 0.08; Hy = 100 km/sec/Mpc. c(1 + 3)

Di,e =
’ Ho¥l + g5 - 30,

€ cosh w (11)




where o 1is given by equation (8). The difference ¢ could be read from a
plot similar to figure 2 extended to higher values of &; thus at the higher
values of & the deleted cubic term might have introduced a difference that
does not show in figure 2. 1In reference 3 the difference between the values of
oH R
——%—9 for the finite- and zero-density models was 0.005 at & = 1. This d4if-
ference, which corresponded to a difference in D; of 108 parsecs, was con-

sidered acceptable. For equation (11) Dz,e was assumed to be 108 parsecs,

and € was assumed to be 0.005. For these values and for o, = 0.08, equa-
tion (11) indicated that the errors would occur at & = 2.25 and & = 4.95
for q4 = 0.5 and g = 2.5, respectively. In these calculations Hy was

taken as 100/km/sec/Mpc.

Equation (10) represents a good closed-form approximate solution for the
luminosity distance in a zero-pressure finite-density model universe that pos-
sesses the U-property and has a nonzero cosmical constant. Unfortunately, there
are many model universes covered by this equation. (See ref. 3.) BEach of these
universes involves a slightly different form of equation (10). In addition,
singularities arise which must be handled as indeterminate forms. If the signs
of k and A are known, equation (10) is useful in establishing the model uni-
verse, because only one specific form of equation (10) is necessary.

In addition to the luminosity distance, the time of light travel and the
scale factor R are of interest. The fact that the term 20065 can be neg-

lected makes it possible to derive accurate closed-form expressions for the
variables to - t and R.

The integral for to5 - t- from reference 3 is

5
as
to - t = Hy™h f (12)

1/2
(1 + 5)[20065 + (3og + qg + 1)8% + 2(g, + 1)8 + 1]

where t, 1s the present time and t is some other time in the past. When the
term 20065 is neglected, the expression integrates to

-1
H
° sin-1 — - sin -

-1
\fqo - 50, Roquo(qo + 1) - 30, \fqo (ap + 1) - 30,

which is the general solution for t, - t in the model universe with a nonzero

(12a)

tg -t =

cosmical constant.

Figure 3 compares the numerical solution of the integral (eq. (12)) with
the approximate solution given by equation (l2a) for k =-1 and A<O. In
this figure (to - t)Ho is plotted as a function of ®, and, as can be seen,

the agreement between equations (12) and (12a) is excellent.
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Figure 3.- Comparison of solutions for tg- t/Ho'l given by elliptic
integral equation (11) and the approximate solution, equation (12).

The inversion of equation (12a) gives a solution for R, which is

R = Ro r 9o cos qu - 500(t0 _ ‘t) - gin —VM@;O - t)} - ;_UORL (13)

\Ii: - 30, qu - 30, Ho-l Ho-l o ~ I0q
RELATTONSHIPS CONNECTING OBSERVATION AND THEORY

The two most useful relationships connecting observation and theory are the
redshift-magnitude relation and the count-magnitude relation. Of the two, the
redshift-magnitude relation is more useful with present data and provides the
stronger connection between observation and theory.

The redshift-magnitude relation is obtained by substituting equation (lO)
into equation (1):

m-K=510glo

e(1 +8) L+ a5 - 30, l:jOSh-l (509 +ao +1)8 + (g5 + 1)

Hovl“‘qo’ﬁ’o l+q°+50 ‘Jqo(qo+l) - 3%

+ 1
- cosh=1 2o + My + MM, -5 (14)

Yoo (@0 + 1) - 39,




To the first approximation AM, 1is given by - %9 5, Mo being the change in

0
absolute magnitude per epoch due to evolutionary effects. (see ref. 2.) This
form of the redshift-magnitude relation contains three undetermined constants,
dys Og, and H,, and can, in theory, be used with observational data in a

least-squares computing process to find the best values of these parameters.

Figure 4 shows the effect of varying gq, when Hy = 100 km/sec/Mpc,
0o = 0.08, and M, = 20.56. The separation of these curves varies from 0.127%
between the curves for g, = 0.5 and a4 = 1.0 to 0.078™ between the curves
for qo =2.5 and q5 =3.0 at & = 1. This separation is slightly smaller
than the separation for the zero-density model universe (ref. 3), and indicates
that either observation must be extended beyond & = 1 or the precision must
be improved before a model of the universe can be defined. The separations are
still less than the best root mean square of the residuals found in reference 3.
The calculations in reference 3 are considered to be applicable to this case
because there is little or no effect of o, on the separation curve out to
redshift values of 0.46.
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Figure 4.- Effect of varying ¢, on redshift-magnitude relation (eq. (14)}. Hy = 100 km /sec/Mpc; o, = 0.08; My = 20.56; AM = 0.



Figure 5 shows the effect of o, on the redshift-magnitude relation when
dg = 1.5. The curves for o, = 0.016 and Og = 0.16 approximately correspond
to the limits of Oort's density range (see ref. 5) and the separation is about
0.0 at & = 1. TIncreasing o, to 0.80 gave a separation of 0.286™ at
® = 1. These results indicate that, up to oy 0.016, density has little
effect on the redshift-magnitude relation. This conclusion confirms the results
of reference 3 which indicate that up to oy = 0.16, the finite- and zero-
density redshift-magnitude relations are the same. The curve for oy = 0.16 is
separated very little from the curves for oo = 0.04 and o, = 0.016 in fig-
ure 5. This separation is not evident in reference 3 because of the scale used
in plotting the figure, and for practical purposes it is negligible. It thus
appears that the value of o5 must exceed 0.16 before the effect of density

becomes appreciable.
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Figure 5.- Effect of varying ¢y on redshift-magnitude relation (eq. (14)). Hy = 100 km/sec/Mpc; Gy = 1.5; Mp = -20.56; AM = 0.



Another relationship that is useful in the analysis of observational data
and that comes from the model universe 1s the count-magnitude relation. In the
past, the count-magnitude relation has not been very satisfactory for the analy-
sils of observational data because the distance surveyed by the 200-inch tele-
scope is not large enough to give an adequate data sample. (See ref. 6.) How-
ever, with the advent of the space telescope, this situation may change.

The count-magnitude relation (ref. 3) is

3
N(m) = ﬂ(sinh Vkw cosh {ka - Jfl_w) (15)
(‘k)Qo

where o is given by equation (8). 1In equation (15), N(m) is the number of
galaxies brighter than a given apparent magnitude m, n 1is the number of gal-
axies per unit volume, and Q, 1s the number of square degrees in the celes-
tial sphere.

This count-magnitude relation for the finite-density model, unlike the one
for the zero-density model (ref. 5), is very close to the exact count-magnitude
relation because of the agreement of the exact and approximate values of w
and Rg,.

CONCLUDING REMARKS

Relativistic finite-density zero-pressure models of the universe that
possess the U-property and have a metric subspace that is described by the
Robertson-Walker metric have been studied. Approximate expressions for the
radial metric variable and the luminosity distance have been derived. Up to
redshifts of 1, the approximate solutions do not differ from the exact sclu-
tion obtained through the use of a high-speed digital computer. An expression
for the difference in the luminosity distances that is valid for any redshift
was obtained. In addition, similarly precise closed-form solutions have been
obtained for the travel time of light from galaxies and the scale factor of
the universe.

These results are used to obtain a redshift-magnitude relation that holds
for all finite-density zero-pressure model universes that have the U-property
except for those with a zero cosmical constant. This expression is difficult
to use because of the many models the solution contains and because of the sin-
gularities that arise. However, if the signs of the cosmical constant and the
curvature constant are known, the expression becomes very useful for the analy-
sis of observational data. This form of the redshift-magnitude relation permits
the calculation of the density parameter from apparent magnitude and redshift
data. Lastly, a potentially useful form of the count-magnitude relation is also
derived.

Langley Research Center,
National Aeronautics and Space Administration,
Langley Station, Hampton, Va., June 23, 1965.

10



APPENDIX

SYMBOLS

speed of light in vacuum

lJuminosity distance

Hubble parameter

redshift correction to apparent magnitude
curvature constant

absolute magnitude

evolutionary correction to absolute magnitude

rate of change of absolute magnitude for present epoch,

apparent magnitude

number of galaxies brighter than apparent magnitude m
number of galaxies per unit volume

number of square degrees in celestial sphere
acceleration parameter

scale factor

present value of scale factor

function of w that depends on curvature of space
time before present

present time

redshift

cosmical constant

density parameter

function of radial metric variable

11
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